Interaction of microwaves and a temporally incoherent magnetic field on spatial learning in the rat.
نویسنده
چکیده
The effect of a temporally incoherent magnetic field ('noise') on microwave-induced spatial learning deficit in the rat was investigated. Rats were trained in six sessions to locate a submerged platform in a circular water maze. Four treatment groups of rats were studied: microwave-exposure (2450-MHz continuous-wave microwaves, power density 2 mW/cm(2), average whole-body specific absorption rate 1.2 W/kg), 'noise' exposure (60 mG), 'microwave+noise' exposure, and sham exposure. Animals were exposed to these conditions for 1 h immediately before each training session. One hour after the last training session, animals were tested in a 2-min probe trial in the maze during which the platform was removed. The time spent during the 2 min in the quadrant of the maze in which the platform had been located was scored. Results show that microwave-exposed rats had significant deficit in learning to locate the submerged platform when compared with the performance of the sham-exposed animals. Exposure to 'noise' alone did not significantly affect the performance of the animals (i.e., it was similar to that of the sham-exposed rats). However, simultaneous exposure to 'noise' significantly attenuated the microwave-induced spatial learning deficit (i.e. 'microwave+noise'-exposed rats learned significantly better than the microwave-exposed rats). During the probe trial, microwave-exposed animals spent significantly less time in the quadrant where the platform was located. However, response of the 'microwave+noise'-exposed animals was similar to that of the sham-exposed animals during the probe trial. Thus, simultaneous exposure to a temporally incoherent magnetic field blocks microwave-induced spatial learning and memory deficits in the rat.
منابع مشابه
Effect of Mobile Phone Microwaves on Fetal Period of BALB/c Mice in Histological Characteristics of Hippocampus and Learning Behaviors
Objective(s) The possible risks of radio-frequency electromagnetic fields (EMF) for the living organisms and human body are a growing concern for our society. In this study, we examined the possibility of changes in working memory and hippocampal histological characteristics effects in mice brain following whole body exposure to microwave radiation. Materials and Methods During gestation per...
متن کاملAssessment of the role of NMDA receptors located in hippocampal CA1 area on the effects of oral morphine dependency on spatial learning and memory in rat
Introduction: It has been reported that oral morphine dependency facilitated formation of spatial learning and memory. In the present study the role of NMDA receptors located in hippocampal CA1 area of morphine dependent rats was studied. Methods: Male rats were divided into 4 groups. Two cannulae were stereotaxically implanted bilaterally into the hippocampal CA1 area. After 5 days recover...
متن کاملA review on combined biological effects of microwave and other physical or chemical agents
With the development of science and technology, microwave has been used in many fields such as industry, military, medicine and communication. People are living in a lapped and dynamic electromagnetic environment. Concerns about potential hazards of microwave are getting increasing attentions. The single biological effects of microwave were widely discussed which was considered harmful. Relevan...
متن کاملEffect of Vitamin D3 on Improvement of Learning and Spatial Memory Following Demyelination induction in hippocampal CA1 Area of rat
Introduction: Consumption of vitamin D3 is effective to reduce intensity of autoimmune diseases such as multiple sclerosis. Neurons of the central nervous system are constantly exposed to reactive oxygen species and these factors play a key role in the destruction of myelin and damage of axons. The hippocampus is a vital center for learning and memory in central nervous system. This area is ...
متن کاملThe effect of injection of estradiol benzoate into hippocampal CA1 area on spatial learning and memory in intact and castrated adult male rats
Estrogen has a widespread and complex influence on brain capabilities such as learning and memory. On the other hand, hippocampus as one of the main brain structures has an important role in spatial information processing. There is some evidence on the existence of estrogen receptors in the hippocampal CA1 area. So, in this study the effect of intrahippocampal injection of estradiol benzoate on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiology & behavior
دوره 82 5 شماره
صفحات -
تاریخ انتشار 2004